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Abstract

We use algebraic methods to compute the simple Hurwitz numbers for arbitrary source and target
Riemann surfaces. For an elliptic curve target, we reproduce the results previously obtained by string
theorists. Motivated by the Gromov-Witten potentials, we find a general generating function for
the simple Hurwitz numbers in terms of the representation theory of the symmetric §rovje
also find a generating function for Hodge integrals on the moduli spdge of Riemann surfaces
with two marked points, similar to that found by Faber and Pandharipande for the case of one
marked point.
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1. Introduction

Many classical problems in enumerative geometry have been receiving renewed interests
in recent years, the main reason being that they can be translated into the modern language
of Gromov-Witten theory and, moreover, that they can be consequently solved. One such
classical problem which has been under recent active investigation is the Hurwitz enu-
meration problem of counting topologically distinct, almost simple, ramified covers of the
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Nomenclature

Byho see(2.2)
fY the dimension of the irreducible representatjoa R,
Hyg simplified notation for.§” . Not to be confused witt#7
Iillf generating functions fau;", for fixed ¢ andh (see(4.1))
H; generating functions fqi;" , for fixed ¢ ands
R the set of all ordinary irreducible representations of the
symmetric grougs,,
t,f entries of the branching type matix
?;1 coordinates on the large phase space in the Gromov-Witten theory
Toho subset of3,, 1, », generating a transitive subgroup$f

Greek letters

uﬁ:’; the usual degree-simple Hurwitz numbers for covers of a genus-
Riemann surface by gengsRiemann surfaces

ﬁiﬁ, Np.h.r Mednykh'’s definition of simple Hurwitz numbers, including the
fixed point contributions of thd,, action (se&Section 2.%or details)

xy (1%t -..n%) the character of the irreducible representatioa R, evaluated at
the conjugacy clasg1*! - - - n®)]. For thosex; which are zero,
we omit the associated cycle in our notation

projective line or more generally of any compact connected Riemann surface. The almost
simplicity condition is that the branch points be all simple with the possible exception of
one degenerate point, often calleg the branching type of whose pre-images being spec-
ified by an ordered partitiom of the degree of the covering. Letr = (1, ..., o) be an
ordered partition ofi, denoted by + n, of length|e| = w. Then, the number of simple
branch points is determined by the Riemann—Hurwitz formula to be:

r=1-2n+w+2g — 2, (1.1)

whereh andg are the genera of the target and the source Riemann surfaces, respectively.
The numbeui:?u(a) of such covers is called the almost simple Hurwitz number, and in this
paper, we mostly restrict ourselves to simple Hurwitz number$(1"), for which there
is no ramification oveso. Hurwitz numbers appear in many branches of mathematics and
physics. In particular, they arise naturally in combinatorics, as they count factorizations of
permutations into transpositions, and the original idea of Hurwitz expresses them in terms
of the representation theory of the symmetric group. Indeed in this respect, the most general
problem of counting covers of Riemann surfaces by Riemann surfaces, both reducible and
irreducible, with arbitrary branch types, has been completely solved by Medihgkib]
His formulas however generally do not allow explicit computations of the numbers, except
in a few cases.

Itturns outthat one can successfully obtain the simple Hurwitz numbers using Mednykh'’s
works, and in this paper, we shall compute them at low degrees for arbitrary target and source
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Riemann surfaces. Hurwitz numbers also appear in physics: when the target is an elliptic
curve, they are (up to overall normalization constants) the coefficients in the expansion of
the free energies of the largétwo-dimensional quantum Yang—Mills theory on the elliptic
curve, which has in fact a string theory interpretatjat]. The total free energy and the
partition function, which is its exponential, can be thought of as generating functions for
simple Hurwitz number;rsL1 Generalizing this analogy, we have determined the gener-
ating functions for arbltrary targets in terms of the representation theory of the symmetric
groups;,.

In the framework of Gromov—Witten theory, simple Hurwitz numbers can be considered
as certain cohomological classes evaluated over the virtual fundamental class of the moduli
space of stable maps B [7]. By exploiting this reformulation, many new results such as
new recursion relatior{3,18] have been obtained. Furthermore, a beautiful link with Hodge
integrals has been discovered, both by virtual localizdfigh0] and by other methodg].

It is therefore natural to expect that the knowledge of Hurwitz numbers might be used
to gain new insights into Hodge integrals. This line of investigations has previously led
to a closed-form formula for a generating function for Hodge integrals over the moduli
spacmg,l of curves with one marked poif2,5]. Similarly, in this paper, we consider the
following generating function for Hodge integrals ov?tg,zz

_1 23 i Ao
Gt k) ._2+Zt Dk /Mgz A — YA — o)

For negative integral values #f we have managed to compuiét, k) in a closed form by
relating the integrals to the almost simple Hurwitz numb%ék(k k). We then conjecture
a simplified version of our rigorously obtained result, and this conjectural counterpart can
then be analytically continued to all valuestofe have checked that the conjectural form
of our formula holds true for-60 < k < 1, but unfortunately, we have not been able to
prove it for arbitraryk. The success of the computation makes us speculate that in more
general cases, similar results might be within reach, and the simplicity of the results suggests
that new yet undiscovered structures might be present.

This paper is organized as follows:3®ction 2we briefly explain the work of Mednykh
and apply it to compute the simple Hurwitz numbersSiction 3 we find the generating
functions for all simple Hurwitz numberSection 4discusses our closed-form formula for
the generating function for Hodge integrals O\Erg,z; and, we conclude by drawing the
reader’s attention to some important open questions.

2. Computations of smple Hurwitz numbers

This section describes our computations of the simple Hurwitz nunptjéfsThe simple
covers of an elliptic curve by elliptic curves are actually unramified, and we obtain the
numbersu1 " by using the standard theory of two-dimensional lattices (we thank R. Vakil
for explammg this approach to us). For other valueg @ind#, we simplify the general
formulas of MednykH14] and explicitly compute the numbers for low degrees.
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2.1. Unramified covers of a torus by tori

For covers of an elliptic curve by elliptic curves, the Riemann—Hurwitz fornfula)
becomes

r=w-—n,

but sincen > w, there cannot be any simple branch points and the special poialso

has no branching. As a result, the computation for this case reduces to determining the
number of degree unbranched covers of an elliptic curve by elliptic curves. Equivalently,
for a given latticel. associated with the target elliptic curve, we need to find the number of
inequivalent sublattices’ c L of index [L : L] = n. The answer is given byemma B.1

to be

~1n
Hyp = o1(n),

where, as usuab;(n) = de d*. Note that we are doing the actual counting of distinct

covers, and our answew1 is not equal toui which is defined by incorporating the
automorphism group of the cover differently. This point will become clear in our ensuing
discussions.

The generating function for the number of inequivalent simple covers of an elliptic curve
by elliptic curves is thus given by

- dlo 1
H = o1(n)q" = — <—gt77(6]) - Zl) (2.1)
whereg = €.

Up to the constant 1/24, our answ@r1) is a derivative of the genus-1 free enetgy
of string theory on an elliptic curve target space. The expreggidican also be obtained
by counting distinct orbits of the action &, on a set7, 1.0, which will be discussed
subsequently. The string theory computatior/af however, counts the numbﬁﬁ
|'Tn.1.0l/n! without taking the fixed points of thg, action into account, and it is somewhat
surprising that our counting is related to the string theory answer by simple multiplication
by the degree. It turns out that this phenomenon occurg fer 1 because the function
o1(n) can be expressed as a sum of products(®f, wherer(k) is the number of distinct
partitions of the integek into positive integers, and because this sum precisely appears
in the definition ofT,, 1.0 = |7..1.0l. We will elaborate upon this point iBection 2.3In
other cases, the two number§’, andji; " are related by an additive term which generally
depends o, i, andn.

2.2. Low degree computations from the work of Mednykh

The most general Hurwitz enumeration problem for an arbitrary branch type has been
formally solved by MednykHi14]. His answers are based on the original idea of Hurwitz
of reformulating the ramified covers in terms of the representation thea$y [if2]. Let
f X, — X, be adegree-branched cover of a compact connected Riemann surface of
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genushk by a compact connected Riemann surface of genuwsith » branch points, the
orders of whose pre-images being specified by the partitiéfs= (1’57, ey n’f:) Fon,

p =1,...,r. The ramification type of the coveringfjis then denoted by the matrix =
(7). Two such branched coveys and f» are equivalent if there exists a homeomorphism
¢ Xy — Xgsuchthatf, = f1 0 ¢. Now, define the se, ;, , as

Buno=1(a1, b1, ... an by, A5, ... 0%y, ..., (11, ... n')) € (S)ZH]
h r , »
[[lai. 2l [T@7.....n") =1}, (2.2)
i=1 p=1

and7, ».s C Bnu.no asthe subsetwhose elements generate transitive subgraip3 bén,
according to Hurwitz, there is a one-to-one correspondence between irreducible branched
covers and elements®j ; .. Furthermore, the equivalence relation of covers gets translated
into conjugation by a permutation 8y, i.e. two elements of,, , , are now equivalent iff
they are conjugates. Thus, the Hurwitz enumeration problem reduces to counting the number
of orbits in7,, ».» under the action of,, by conjugation.

Let us denote the orders of the setsBy, o = |Bun.ol andTy n.0 = |To.nol- Then,
using the classical Burnside’s formula, Mednykh obtains the following theorem for the
numberN, 5, » Of orbits:

Theorem 2.1 (Mednykh). The number of degree-n non-equivalent branched covers of the
ramification types = (t/),for p=1,...,r,ands = 1,...,n is given by

1 M(Z/d)d(Zh_Z-H)m—H'
Nnho = n Z Z (m — 1)
e 1/ 0)ld|¢ '

ml=n
d o(x, s/ k) kr 57
< | 2T 22 11 — [Tl . T B I )
Jip x=1sk,p k,p Jkpr 0 Jhp

wherer := GCD{#}'}, v := GCD{st}, (t, £) = GCD(t, ¢), 5, = ZT:dl Ji ,» and the sum
overj;’p ranges over all coIIection(sj;;p} satisfying the condition

§ sty

Z Kz, = VA
1<k<st/e
(s/(s, d))kls
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wherej,i, is non-zero only foll < k < st’/¢ and(s/(s, d))|k|s. The functiong. and¢ are
the Mobius and von Sterneck functions

As is apparent from its daunting form, the expression involves many conditional sums
and does not immediately yield the desired numerical answers. Mednykh’s works, even
though quite remarkable, are thus of dormant nature for obtaining the closed-form numerical
answers of the Hurwitz enumeration problem. (Recently, closed-form answers for coverings
of a Riemann sphere by genus-0,1,2 Riemann surfaces with one non-simple branching have
been obtained ifR].)

Interestingly, the general formu{a.3)still has some applicability. For example,[itb],
Mednykh considers the special case of branch points whose orders are all equal to the degree
of the cover and obtains a simplified formula which is suitable for practical applications. In
a similar vein, we discover that for simple branched covers, Mednykh'’s formula simplifies
dramatically and that for some low degrees, we are able to obtain closed-form answers for
simple Hurwitz numbers of ramified coverings of gertuBRiemann surfaces by genygs-
Riemann surfaces.

2.2.1. The simplifications for simple Hurwitz numbers

We consider degree-simple branch covers of a geniasRiemann surface by genys-
Riemann surfaces. A simple branch point has ord&r2, 2), and thus the branch type is
characterized by the matrix= (¢),forp=1,...,r,ands =1, ..., n, where

= (n—2)81+ 8.2

To apply Mednykh’s master formul@.3), we need to determine= GCD{z/} andv =
GCD{st’}, which are easily seen to be

2 for neven

t=1 and v=
1 for nodd

Because determines the range of the first sum in the master formula, we need to distinguish
when the degree is odd or even.

2.2.2. Odd degree covers
For degree: odd, we have = d = (¢, £) = 1 andm = n. The constraintgs/ (s, d))|k|s
and

. st
Z K., = A
1<k<st//t

then determine the collectidn; p} to be

j]i’p = tfak,S'
Noting that¢(1, 1) = 1, we see that the master formula now reduces to

Tn,h,(slf)
n!

Noho = (n odd), (2.4)
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where

n
sy = Jip = 1, = (n— 281+ 8.2 (2.5)
s=1

2.2.3. Even degree covers
For degreet even,v = 2 and thug = 1 or 2.

e ¢ = 1: The variables take the same values as in the cageanfd, and the = 1
contribution toN, ,, » is thus precisely given b{2.4).
e ¢ = 2: In this case, the summed variables are fixed to be

m:%n, and d=+¢=2.

Then, one determines that

Jip = 2108, 1851 + 1585 28k 1
from which it follows that

5 = %nSk,l,

where we have put a tilde oveej2 to distinguish them fron§2.5). Using the fact that the
number- of simple branch pointsis even, andthe valgi€s 1) = ¢(2,2) = —¢(1,2) = 1,
one can now show that thle= 2 contribution toN,, j » is

2(’1*1)}’14*1 n r—1
(n/2—1)! (E) Tar2np-

The sum of both contributions is finally given by

1 2(h—Dn+1

T

ny\r—1

Nn,h,a = 2

n!

Notations. For simple branch types, i.e. for= (t,f) Wheret,ﬁ7 = (n — 2)8.1 + Sk.2, for
p=1...,randk =1,...,n, wewill use the notatiofT,, s =: Ty.i.r-

The computations of fixed-degreesimple Hurwitz numbers are thus reduced to com-
puting the two number%"nvhv(sf) and Tj2.n.Glys only the former being relevant whenis
odd. We now compute these numbers for some low degrees and arbitrary hemeta.
The nature of the computations is such that we only need to know the characters of the
identity and the transposition elementsSip

The term?,, 5, ) €an be easily computed:

Lemma2.l. Lets = né 1. Then

n (_1)k+l k i! 2h—2
T =n X - 2T E(F) |

ni+-+ng=n i=1 )/ERn,'
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wheren; are positive integersk,,; the set of all irreducible representations §f, and fY
the dimension of the representatign

Forh = 0, we can explicitly evaluate this contribution:

Lemma2.2. Lets; = né 1. Then

n k+1
(=1 "
T ~ = —_— =
n,0,G0) Z k Z ni,..., Nk

k=1
n+---+ng=n

1 f =1
{ or n =1, 2.7)

0 formn>1
}’li>0

Proof. The first equality follows from the fact that the order of a finite group is equal to
the sum of squares of the dimension of its irreducible representations. The second equality
follows by noticing that the expression fﬁj);’oﬁ(glf)/n! is thenth coefficient of the formal

g-expansion of lodY 7> 14" /n!), which is a fancy way of writing. O

Using (2.4) and (2.6)we have computed closed-form formulas for the simple Hur-
witz numbers for arbitrary source and target Riemann surfaces for degrees less than 8
in Appendix C

2.3. Cautionary remarks

Hurwitz numbers are sometimdsfinedo be7, ,, ,/n!, counting orbits as if there were
no fixed points of the actiof}, on7, » . The master formula obtained by Mednykh uses the
Burnside’s formula to account for the fixed points. In the case of simple Hurwitz numbers,
this will lead to an apparent discrepancy between our results and those obtained by others for
even degree covers, the precise reason being that for even degree covers, say ofidegree-2
the action of(2") € S2, on T2, 1.+ has fixed points which are counted by the second term
in (2.6). Consequently, to obtain the usual even degree Hurwitz numbers, we just need
to consider the contribution of the first term (B.6). For odd degree cases, there is no
non-trivial fixed points, and our formula needs no adjustment. The following examples of
the discussion would be instructive:

2.3.1. Example 1
Let us explicitly count the double covers of an elliptic curve by geaBRsemann surfaces.
The setT; 12,2 is given by

Ta12¢-2 = {(a, b, (2%7?) € S5¥|aba b~ 1222 = 1}.

Since S, is commutative and2)? = 1, any pair(a, b) € S» x Sz satisfies the required
condition. Hence, the order @& 1 2, is four. Now, to count non-equivalent coverings,
we need to consider the action§yf on the sef/; 1 2,—» by conjugation. Again, sincé is
Abelian, it is clear that it acts trivially on the set and thus that there are four inequivalent
double covers of an elliptic curve by gengsRiemann surfaces. The commonly adopted
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definition of Hurwitz number, however, specifies that we should take the order of the set
T2,1,2,—2 and divide it by the dimension df, yielding 2 as its answer. This number 2 is
precisely the first contribution in the Burnside’s formula:

1) | Fe
N2,1,2¢-2 Z|0| (l ()—2+2 4,

deSz
where| F,| is the order of the fixed-point set under the actiow &f S,. For oddn, S, acts
freely on the sef,, 5 -, but for evern, it has fixed points and our formu{d.6)accounts for
the phenomenon, trulgountingthe number of inequivalent covers.
To avoid possible confusions, we thus use the following notations to distinguish the two
numbers:

n ]nhl
g&n . L) f
Mh, | ora n,

and
~g.n .
H n = Nn,h,r-

It turns out that current researchers are mostly interestecfiﬁl for example, it is this
definition of simple Hurwitz numbers that appears in the string theory literature and in
relation to Gromov-Witten invariants. In this paper, we will compute the nunﬂiejsand
indicate the? = 2 contributions which can be subtracted to yialﬁﬁ. We will however

find generating functions only for the cag§, .

2.3.2. Example 2

The above discussion shows that the two numlpér%L andu differ by the second
term in(2.6)and thus are not related by simple multiplicative factors Ferlandg =1,
however, we have previously observed tlﬁéft given in(2.1) is equal tod;F1, up to an
additive constant, implying that

~1n 1,n
Mln _ann

This special equality actually follows froiremma B.2 since we know tha,ai1 "
and since one can show that

k+1 k
Miz - Tu.1,0 _Z( 1) Z (l_[ﬂ(mi)>~

mit-+mp=n \i=1

= o1(n)

2.4. Recursive solutions ®, 5 - for an elliptic curve f = 1)

Elliptic curve is the simplest Calabi—Yau manifold and is of particular interest to string
theorists. The free energigs count the numberﬂ,f;”;'l, and string theorists have computed
F, for g < 8[16]. Using the approach described in the previous subsection, we have
obtained the closed-form formulas fof, , - forn < 8. Forh = 1, its¢ = 1 parts
agree with the known free energi¢s. Although our results are rewarding in that they
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give explicit answers for alf andh, further computations become somewhat cumbersome
beyond degree 8. For higher degrees, we therefore adopt a recursive method ) solve
on a case-by-case basis.

The number of reducible coves, ;, ,/n! and that of irreducible covers, , ,/n! are
related by exponentiatidd5]:

Bn,h,a Tn,h,a
Z n! w’ = exp Z o w’ |, (2.8)

>0 >0

wherew? denotes the multi-product
r n
_ i
= H H Wpk
p=1k=1
in the indeterminatespk ando > 0 means,f > 0Vp, k. From(2.8), one can derive

n
1 n
Bn,h,o = Z F ny "y Z Tnl,h,ol e Tnk,h,ok'

k=1
n—+---+nr=n

o1+:--+o0r=0

In particular, for simple covers of an elliptic curve, partitioningppropriately yields

k
Tn,l,r:Bn,l,r . . i Z r 1_[ Tni,l,ZZi (2 9)
n! n! k! 2617'72616 n;! ’ '

i=1 !
ni+---+ng=n
201+ + 2 =r

wheren; and{; are positive and non-negative integers, respectively. For fixed degi28)
expresseg,, 1, in terms of lower degree and lower genera Hurwitz numbers,Bng..
The numbeiB,, 1, in this case reduces to

r
n

By 1, = 721_12 Z ZPI(PZ_]-)]_[( —2- p]) )

—Dj
k=1 i€eZ i
ni+ -+ =n 7

np=znzz---=ng

wherep; =n; +k—iandZ = {i € {1,..., k}|(p; — 2) = 0}. In Appendix D, we provide
the explicit values oB,, , - forn < 9.

We have implemented the recursion intdathematicaprogram which, using our re-
sults from the previous subsection as inputs, comptias. for n > 8. For the sake of
demonstration, we present some numerical valud @f./n! for n < 9 in Appendix E
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3. Generating functionsfor smple Hurwitz numbers

Recently, Géttsche has conjectured an expression for the generating function for the
number of nodal curves on a surfaSewith a very ample line bundl€, in terms of
certain universal power series and basic invaridfifs More precisely, he conjectures
that the generating functiod(S, L) for the number of nodal curves may have the
form

(S, L) = exp(c2(S)A + K2B 4+ Ks - LC+ L?D),

whereA, B, C, D are universal power series in some formal variablesiégnthe canonical
line bundle ofS.

In a kindred spirit, it would be interesting to see whether such universal structures exist
for Hurwitz numbers. For a curve, the analogueggfandc»(S) would be the genus of the
target and. the degree of the branched cover. It turns out that for simple Hurwitz numbers,
we are able to find their generating functions in closed-forms, but the resulting structure is
seen to be more complicated than that for the case of surfaces.

3.1. Summing up the string coupling expansions

The free energie&, on an elliptic curve have been computedi8] up tog = 8, and
theirg-expansions agree precisely with our results showkpipendix E (Here g = exp(?),
wheret is a formal variable dual to the Kahler class of the elliptic curve.)

For a fixed degree < 8, we knowF, for all g, so we can sum up the expansion

F= Z)ﬁg*z}‘g, (3.1)
8

up to the given degree in the world-sheet instanton expansion. That is, we are summing
up the string coupling expansions, and this computation is a counterpart of “summing up
the world-sheet instantons” which string theorists are accustomed to studying.

Consider the following generating function for simple Hurwitz numbers:

oy = Y s 2 gl o 3.2
DESY e —Zuh,nﬁq, (3.2)
g,n g,n

which coincides with the total free ener{8.1)for » = 1. For low degree simple covers of
an elliptic curve, we can use our resylis1)to perform the summation over the number
of simple branch points and get

o1 =Y 1%72F, = —log(g~?*(¢)) + 2[ cosh() — 1]¢*
8
+ 2[cosh(31) — cosh(V)]g®

+2 [cosh(GA) + % cosh(2)) — cosh(31) + cosh(r) — g} q4 + O(q5).
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The partition functionz = e®® is then given by
Z =1+ g+ 2cosh\)g? + [1 + 2 cosh(31)]¢> + [1 + 2 cosh(24) + 2 cosh(61)]¢*
+[1 + 2 cosh2x) 4 2 cosh(51) + 2 cosh(104)]¢° + O(¢®).

At this point, we can observe a pattern emerging, and indeed, the partition function can be
obtained to all degrees from the following statement which, we subsequently discovered,
was also given iffl]:

Claim 3.1. The partition function Zor the exponential of the generating function for simple
Hurwitz numbersfor an elliptic curve target is given by

Z=14q+) Zcosh[(l)x”f—(yz)k} 4. (3.3)

n>2 \yeR,

Proof. From(2.9), we see that

n k

Bn,l,r 1

n'r' = F Z l_[(]:K,'—Fl)q”i ) (34)
r! —

i=1

n+---+np=n
200+ -+ 22 =r

where, as before,; and¢; are positive and non-negative integers, respectively(Z&y,
is the coefficient of/” in the genuss free energy. The numbes;, 1, are determined to be

,
n r
! @ ]

Bya,r= n: <2> I:ZyeRn ( 77 ) for n > 2,

8r0 for n < 1.

Now, multiplying both sides of3.4)by A"¢" and summing over all even> Oand allz > 0
proves the claim. O

The argument of hyperbolic-cosine is known as the central character of the irreducible
representatioyr and can be evaluated as(i.1).

3.1.1. Further recursions for closed-form answers

The above explicit form of the partition function gives rise to a powerful way of recursively
solving for the simple Hurwitz numbe@ﬁ for a given degree, similar to those given in
(E.1). Let us consider this more closely. Suppose that, knowing closed-form formulas for
Mf}fji for all n; < n and arbitraryg;, we are interested in deriving a closed-form formula

for uf",, whereg is again arbitrary. The key idea is to match the coefficient%f 24"
in the expansion of the partition functidf with the coefficient of the same term in the
expansion

expl@(D] = 1+ &(1) + %[@(1)]2 bt k—ll[qm)]k .
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The coefficient ok 25~24" in @(1) contains precisely what we are looking for, name%.

On the other hand, the coefficients)®® 24" in [®(1)], for k > 1, are given in terms of

puf,", wheren; < nandg; < g. But, by hypothesis, we knows’," for all n; < n, and

therefore we can solve fars’) in a closed-form. Using this method, we have obtained the
degree-8 Hurwitz numbers, and the answer agrees with the known results as well as the
computation done by our earlier recursive method.

This recursive method also works for determining the general simple Hurwitz numbers
Mh . upon using the general “partition functio(8.5)in place ofZ.

3.2. The generating functions for target curves of arbitrary genus

For arbitrary genus targets, there is a natural generalization of the above discussion on
the generating functions. We have previously defined the generating fudatiorto be

D(h) = Z,uh,,l :

r,n>0

and seen that for = 1, it coincides with the total free energy of string theory on an elliptic
curve target, wherg s identified with the string coupling constant. Fog 1, however, the
formal parametex should be actually viewed as the paramé}tdual to the first descendant
of the Kahler class. (Unfortunately, we have previously used the notéiitmdenote the
branching matrix. Here, to avoid confusions, we tif® the coordinates that appear in the
Gromov-Witten theory.) We do not need an extra genus-keeping parameter, because for
simple covers of a fixed target space with a given number of marked pottisosing the
degree of the map fixes the genus of the source Riemann surface uniquely. For the purpose
of finding a nice generating function, it is thus convenient to treatdn as independent
indices, with the requirement that they be both non-negative.

Forr = 0, our previous computations of the simple Hurwitz numbers need to be modified
as

0w (i 2 2-2
=) — > [T =21 > (">
k=1

i=1 R,

I’ll+-"+nk=nl VE€Rn;
n[>>0

Also, note thatVy ;- = §,.0. Then, we have

Claim 3.2. The generalized “partition function’Z(h) = exp(®(h)) for all h is given by

2h—2
Z(h)—l—i—q—i—ZZ( ) cosh[(Z)XVf—(yz)x}q". (3.5)

n>2yeR,

Proof. The proof is exactly the same as that@#him 3.1 One just needs to keep track
of extra factors in the general form d, , ,. For genush = 0, when applying the
Riemann—Hurwitz formula, we must remember to use the correctly defined arithmetic genus
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of reducible curves and, as a result, sum over all even0 in B, o ,; doing so takes into
account the degree-1 covers in the exponential. O

4, Hodgeintegralson /\_/lg,g and Hurwitz numbers

In the modern language of Gromov—Witten theory, the simple Hurwitz numbers are equal
to

Tn.h,r
= - = (Tiil>g,n,

wherer = 2(1 — h)n + 2(g — 1) andty 1 is thekth descendant of the K&hler class of the
target genug Riemann surface. We can organize these numbers into a generating function
as follows:

1 R A
Hf =" (T a)en () € =

n

1 T” hor (Al) g, 4.1)

where?l and? are coordinates dual to 1 and o 1, respectively. In this paper, we have
determined4.1)for all g andh up to degreer = 7.

Forh = 0 andh = 1, these generating functions arise as genfree energies of string
theory onP! and an elliptic curve as target spaces, respectively, evaluated by setting all
coordinates to zero except ﬁrand?. For definitions of Hodge integrals, sge6].

4.1. Generating functions for Hodge integrals

The Hurwitz enumeration problem has been so far investigated intensely mainly for
branched covers of the Riemann sphere. In this case, the almost simple Hurwitz numbers
for covers with one general branch point can be expressed explicitly in terms of certain
Hodge integrals. An interesting application of this development is to use the generating
function for Hurwitz numbermgj‘f(d) to derive a generating function for Hodge integrals

over the moduli spacéA, 1. More precisely, the formula

8 A 172 \Ftt
Fit.k)y =14 %Y k| 1//2g—2+lxg_i=(.—> : (4.2)

=1 im0 M sin(t/2)

which was first obtained by Faber and Pandharipg®lidoy using virtual localization
techniques has been rederived by Ekedahl gRhlby using the generating function for
Hurwitz numbers for branched covers whose only non-simple branch point has order equal
to the degree of the cover.

In this paper, we speculate a possible connection between the Hurwitz numbgts for
and generating functions for Hodge integralsﬂyn, n > 1. For this purpose, let us
rewrite F(t, k) as

Flr,k) =1 2 k’/ i 4.3
=1+t Z T v (4.3)

g>1 i=0 Mg



S. Monni et al. / Journal of Geometry and Physics 50 (2004) 223-256 237

Now, recall that the simple Hurwitz numbqn%:ﬁ(l”), henceforth abbreviateH, ,, have
the following Hodge integral expressi§r:
H,, =t = (28 — 2+ 2n)! / I-d+- -+ (=D,
s n! Moo e —v0)

for (g,n) # (0,1), (0, 2). The degree-1 simple Hurwitz numbers dfg1 = §, 0, thus
(4.4)yields the relation

(4.4)

/ T—a1+-+ (=134,

=0 for g>1,
ﬂg,l 1_1#1

which implies from(4.3) that F(z, —1) = 1, in accord with the known answé4.2).
Naively, we thus see that the simple Hurwitz numbers are coefficierfts,df) evaluated at
specialk.

In a similar spirit, we can speculate a crude generating function for Hodge integrals with
two marked points:

_1 2\ i Aoi
G(t,k)—§+ztgzk /7 A—v)A—1v2)

g1 i=0 “Ms2

Our goal is to find a closed-form expression for this generating funeignk). Without
much work, we can immediately evaluai€r, k) at certain special values ff

Claim 4.1. The generating functioG (¢, k) can be evaluated @ = —1to be

1 1 2 1/ sin(t/2)\?
G(t’_l)_é_z_2<003t+§_l>_§( 2 ) , (4.5)
and similarly atk = Oto be
1 t 1 12 1
0) == == . 4.6
G0 2(sint> 2 sin(z/2) cos(t/2) (4.6)
Proof. At k = —1, we can usé4.4)to get
2128
-1 = 18— H, ». 4.7
Gt - =) (-1 G 2 He2 (4.7)

>0

We have previously computell, » = N2 0,2,42/2 = 1/2, and we can then perform the
summation in(4.7) and get the desired result. To evaluaié, 0), we use the following
Aq-conjecture, which has been recently proven by Faber and Pandhar{génde

28+n—-3 2g-2
__ 1/’(;1 T w,‘i‘”)»g = _ ng )\g-
Mg,n o1, ...,0p Mg,l
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One can now compute

hg (%11
‘/.i = ! |BZg|,
Mq.2 1-v)A—1Y2) (29)!
and obtain the result. O

To extract the terms without; insertions, consider the scaling limit

1 8 A l
GtkY2 k=2 2 kgfl/ g—i 1
( ) 2 " gg:lt ; Mg A-y(1- Iﬂz) 2
N 4.8
" gglt Z/ M2 (1- Ipl)(l %ﬁz) ( )

The asymptotic behavi@#.8) can be explicitly evaluated as follows:

Claim 4.2. The asymptotic limit of; (¢, k) is

G(tk1/2 )k—>0 eXFXl /3)\/_Erf|: ]

and thusthe integrals can be evaluated to be

/ 1 Z (g —m)!
M, Q=911 —92) T2 m'12m (2g —2m + 1)!”

Proof. This is an easy consequence of the following Dijkgraaf's formula which appeared
in the work of Fabef3]:

(w3 + 2 n! 1 "
(tot(w)T(2)) = exp( o7 ) Z @i+ D [ wz(w + z)hi| , (4.9)

wherez(w) = .o T,w" andi is a formal genus-expansion parameter defined by

g>0

Settingw = z = % = ¢ in (4.9)and noting that

;Zn+l_et2/2\/§Ef|:Li|
§<%+1)!1t - 2"

gives the result, upon using the string equation on the left-hand side. O

For future reference, it would be desirable to find an explicit series expans@(,d).
Using Faber’s Maple program for computing the intersection numbers1Qn [4], the
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generating function can be seen to have an expansion of the form
G(tk)—1+ 1+1k P+ ! + 73k+ 49 12\ 4

T2 12 8 720 2880 @ 2880

4 ( 31 253 983 ., 1181

3 8
41
30240 72576 T 241920 T 725760 )t +O@). - (4.10)

4.2. Relation to Hurwitz numbeysfl:%k(k, k)

We now relate the generating functiéz, k) to the Hurwitz numberﬁﬁ’ék(k, k), which
we are able to compute explicitly. This connection allows us to evalGatek) for all
k € Zo. From the work of2], we know that

(2k + 2g)! k* [ c(Ay))

1Es kb === Mg L= kDL — ko)’

which we can rewrite as

(2k + 2g)! k& +2s=1 8 / (=D& T hg—i

82Kk k) = :
2 (8 2 (k12 My A= YDA —92)

i=0
This implies that for integerk > 0,

2128
. 2t (k1)? e
G(it, — +Z @ 1 21 T (k. k). (4.12)
By using the expan5|o(14.10) and matching coefficients witf#.11) one can thus obtain
the Hurwitz numberao’gk(k k). We have listed the numbers fgr< 4 in Appendix

It is in fact possible to determine the Hurwitz numbea§2 (k, k) from the work of
Shapiro et al. on enumeration of edge-ordered griptisAccording to Theorem 9 of their
paper, (Actually, their formula has a minor mistake for the case wher?k is partitioned
into (k, k) for odd genus. More precisely, when the summation variaibietheir formula

equals(g + 1)/2, for an odd genug, there is a symmetry factor of 1/2 in labeling the
edges because the two disconnected graphs are identical except for the labels.) the Hurwitz

numbers.§ 2k(k k) are given by

ugs 2 (k, k) = N(2k, 2k + 2g, (k, k))
g+1

(2k 4 2¢)!
) ( k) o K 2+2g Z‘S 2+2-25 | (4.12)

where the numbers}, are defined by

k2 sinh(z/2)\* 1
Z‘S = ( /2 ) ’
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and can be written explicitly as

k-1 k+2g—1
1 k=1) g (k=1
6Zg_(k+2g—1)!2< m >( b ( 2 ’") '

m=0
The numbenN(2k, 2k+2g, (k, k)), which counts the number of certain edge-ordered graphs,
is given by
|C(k, k)|
[(2k)1]2

N(2k, 2k + 2g, (k. k)) = Y PG = (o) P2 x (k) (4.13)

p=2k

where|C(k, k)| is the order of the conjugacy cla€gk, k), o’ is the partition conjugate to
p, andh(p) = > I"(i — 1)p; for p = (p1, ..., pm) F 2k. Hence, the problem of finding

ug:gk(k, k) reduces down to evaluatir{g.13)

Claim 4.3. Fork > 2,

N(2k, 2k + 2g, (k, k) =

2k - k1 (2k)! K1+ k)! m

(k= 1! { 2[k(k — 2)]% % (2%)! kf <2k - 1) ="
m=0

2k—1 2k —1
x [k(2k — 2m — 1)]%+28 + Z ( > (—pmt
m

m=k

k—3 k—m—1 k—1 k—1
x [k(2k —2m — D)*F 423" " ( )( )

m=0 p=1 m m+p

p? (20!

1 2k+2
X 7 e L kK = 2m = p— D) g}.

Proof. To each irreducible representation labeled oy= (p1,...,p;) F 2k, we can
associate a Young diagram withrows, theith row having lengthp;. According to the
Murnaghan—Nakayamaule, the diagram corresponding to an irreducible representation
for which x,(k, k) # 0, must be eithefa) a hook or(b) a union of two hooks. After long
and tedious computations, we arrive at the following results:

(&) There are R“one-hook” diagrams.
(i) The diagram with leg-length: for 0 < m < k — 1 gives

4 2k—1 m /
fr= o Xplk, k) = (=D",  h(p) —h(p) = k(2k—2m—1).
m
(ii) The diagram with leg-length: for k < m < 2k — 1 gives
2k—1
fp = < ) ) Xp(k’ k) = (_1)m_1’
m

h(p) — h(p) = k(2k —2m — 1).
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(b) There are&(k — 1)/2 “two-hook” diagrams.

(i) For each value ofr andp satisfyingO<m <k—3and1l<p<k—-m—1,
respectively, there is a diagram with— m columns andp + m + 1 rows. Such
diagram has

k=1\(k=1)\ p*> (2
"= > — 2(—1)Pt1
' _< " )<m+P>k2—p2<k!>2’ Xo(k, k) = 26=DF,
h(p') = h(p) = kik — 2m — p — 1).

(i) One diagram has two columns akdows. It corresponds to the irreducible repre-
sentation with
(2k)!

gD kb =20 k) —hio) = k-2,

o=

Furthermore, after some simple combinatorial consideration, we find|€iatk)| =
(2k)! (k — 1)!/(2k - k!). Finally, substituting ir{4.13)the values off”, x,(k, k) andh(p’) —
h(p) for the abovek(k 4+ 3)/2 irreducible representations gives the desired result. O

By using(4.11) and (4.12)we can now rewrit&; (it, —k) as

Claim 4.4. For integralk > 2,

— 2 k1 fop—1
Git, —k) = Mcosh[(k 2 + 2% Z( )(_1)m

(k + 1)tr2 k(2k)112¢
k—3 k—m— k—1
x cosh [2k — 2m — 1)f] + iz Z Z ( ( )
m=0 p=1 m m+p
2 : 2%k—2
p L o 1 (sinh [t/2]>
X 7 p2( 1P coshfk — 2m — p — 1)¢] 2 <—(t/2)
(4.14)

Proof. By substituting the expressi@d.12)into (4.11)and summing over th&terms, we
get

, 2(k1)?r%s
G(t, — Z @t 20 KB 7 N(2k, 2k + 2g, (k, k))

1 <smh(t/2))2" 2+ sKsk 2

25 £85
k2 t/2 ra +
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1 2(k!y2 22 £ 2kt
== — N2k, 2¢, (k,k)) — Y ————N(2k, 20, (k, k
2+§ (20)1k2t-1 ( (k. k) ;) (20)1k2t-1 ( k. ©))
1 / sinh(t/2)\ %2 5’55k 2 i
- 5 85. 4.15
kt2< /2 e kt2 tx (4.19)
But, byLemma B.3 N(2k, 2¢, (k, k)) = 0 for £ < k — 2. Furthermore, we have
2(khH? 2 sk _ 20h% o
————2 _ N(2k, 2k, (k, k)) + =858 _— k, k
Qo1 KA+ 300%2 = ~ Gppaitoz K0 = =5
and
2(k")2 5’<3’<

—WN(Zk 2k — 2, (k, k))+ o<N(2k2k 2, (k,k)) =0,

where we have used the known f§t¥] that

2%k ka—l
0,2k

o (k, k) = .
/“LO,Z ( ) ( k ) 4

andLemma B.4 Thus, we have

. 2(k1)22t—2k 1 / sinh(t/2)\%*2
G(t, —k) = ————— N2k, 2¢, (k, k) — 5 | ———— ,
( ) EZE) (20)1k2t-1 ( (k. &) k2 1/2
where the first term can now be easily summed to yield our claim. O

It turns out that there are some magical simplifications, and we find for a few low values
of k that

sin(t/2) _ 1 sin(t/2) 4
G(t,-1) = 2( 2 ) , G(t, _2)_6[2+ cos(t)]( 2 ) ,
1 sin(t/2) 6
G, —-3) = %[8 + 6 cos(¢) + cos(21)] ( 2 ) ,
sin(t/2)\®
G, —4) = m[SZ + 29 cos(t) + 8 cos(2t) + cos(3r)] ( 2 ) ,

and so forth. We have explicitly computéi{z, —k) for k < 60, and based on these com-
putations, we conjecture the following general form:
Conjecture4.1. For integersk > 1, the generating function is given by

k—=1Tk—n-1

— i 2k —
Gt —t— 2(k(2k)1!)!k! <S|r;/(t2/2)> |:22(k2)+1+z|: 3 (Zki 1)] cos(nt)]

n=1 i=0
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Let us rewrite the summation as follows:

k—1Tk—n—-1 k—2 k—1—¢
Z[ Z <2kl_ 1)} cos(nt):Z 2k£— 1) ( Z cos(nt))
=0

n=1L i=0 n=1

158 (26— 1)\ [ sin[(2k — 1—20)1/2] L
) e ) [ sin(z/2) a } '

(4.16)

The last expression if@.16)can now be explicitly summed, leading to an expression which
can be analytically continued to all valuesiofAfter some algebraic manipulations, we
obtain the following corollary t&Conjecture 4.1

Conjecture 4.2. For all k, the generating function as a formal power serie€it][[ ¢]] is
given by

221 Myr((1/2) + k) ( sin@/2)\% 1
JT 2k 4+ 1) ( t/2 ) sin(z/2)

x [sm(z) + R €72 F (L, —k, k, — —”))] (4.17)

G(t, —k) =

whereR denotes the real part apéi1 (a, b; c; z) is the generalized hypergeometric function
defined as

(@ (b)i ¢

o
2F1(a,b;c;2) =) o '

k=0

where(a); := I'(a + k)/I'(a). (For k non-positive integers and half-integers, the below
expression of; (t, —k) appears to be divergent. For these cases, one mighttry first expanding
G(t, —k) in r and settingc equal to the desired values.)

We have checked that our conjectural formidl&)indeed reproduces all the terms—see
(4.10)for examples— generated by Faber’s Maple progihup to O(:12).

4.3. Possible extensions

Motivated by our results, let us consider a similar generating function for the case of
more marked points:

A‘_4
Ga(t, k) = Ho.n 28 k’[ 87! )
“)<%2MO+Z’Z e, A= 9D -

g>1 i=0

At k = —1, it can be evaluated in terms of simple Hurwitz numbers as

e¢]

1)8H, ,
G,(t, —1) = n! Z (2( +)2n & 2)|r2g.
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Interestingly, our previous generating function for simple Hurwitz numif@r2), with
A = it, is related toG,, (¢, —1):

(it)Zn—Z .
®(0))3=it =109 Z(0) = ) ———Gn(t, ~Dg".
n=1 n:
Hence, we have
nl n (_1)k—n
Gn(t’ _1) = t2l’l—2 ] n Z Wmi et kaa

mi—+---+mp=n

m; >0
whereW; =1 and

2 .
Wi, = Z <nf—;) cos[(’i’) X)}(yz)t:|.

VERm,-

This relation might suggest a possible connection between the symmetric§jrang the
geometry of the moduli space of marked Riemann surfaces.

Of course,G,(t, —1) can be also explicitly computed from our previous computations
of the simple Hurwitz number#, ,. For example, we find that

(24 cos() ( sin(t/2)\*
G 1y _ (20+21 cos?) +6 cos(21) + cos(3n) ( sin(/2) 6

etc. Similarly,G, (¢, 0) can be computed by using thg-conjecture. For example, one can
easily show that

(/2
sin(3t/2)’
etc. Although we are able to compute the generating fundlig(y, k) at these particu-

lar values, it seems quite difficult—nevertheless possible—to determine its closed-form
expression for alk. It would be a very intriguing project to search for the answer.

G3(t,0) =

5. Conclusion, or an epilogue of questions unanswered

To recapitulate, the first part of our paper studies the simple branched covers of Rie-
mann surfaces by Riemann surfaces of arbitrary genera. Upon fixing the degree of the
irreducible covers, we have obtained closed form answers for simple Hurwitz numbers
for arbitrary source and target Riemann surfaces, up to degree 7. For higher degrees,
we have given a general prescription for extending our results. Our computations are
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novel in the sense that the previously known formulas fix the genus of the source and
target curves and vary the degree as a free parameter. Furthermore, by relating the sim-
ple Hurwitz numbers to descendant Gromov—Witten invariants, we have obtained the ex-
plicit generating function¢3.5) for the number of inequivalent reducible covers for ar-
bitrary source and target Riemann surfaces. For an elliptic curve target, the generating
function (3.3) is known to be a sum of quasi-modular forms. More precisely, in the
expansion

Z=) An@)*,

n=0

the seriesA, (¢) are known to be quasi-modular of weight 6nder the full modular group
PSL(2, Z). Our general answéB.5) for an arbitrary target genus differs from the elliptic
curve case only by the prefactor! /f7)?*=2. Naively, it is thus tempting to hope that the
modular property persists, so that in the expansion

Z(hy =) An@r®,

n=0

the seriesA,’;(q) are guasi-automorphic forms, perhaps under a génsgbgroup of
PSL(2, Z).

Throughout the paper, we have taken caution to distinguish two different conventions
of accounting for the automorphism groups of the branched covers and have clarified their
relations when possible. The recent developments in the study of Hurwitz numbers in-
volve connections to the relative Gromov—Witten theory and Hodge integrals on the moduli
space of stable curves In particular, Li et al. have obtained a set of recursion relations
for the numbersu » (@) by applying the gluing formula to the relevant relative GW
invariants[13]. Inudentally, these recursion relations require as initial data the knowl-
edge of simple Hurwitz numbers, and our work would be useful for applying the relations
as well.

Although we cannot make any precise statements at this stage, our work may also be
relevant to understanding the conjectured Toda hierarchy and the Virasoro constraints for
Gromov-Witten invariants oR* and elliptic curve. It has been shown([it8] that Virasoro
constraints lead to certain recursion relations among simple Hurwitz numbersPfor a
target. It might be interesting to see whether there exist further connections parallel to
these examples. The case of an elliptic curve target seems, however, more elusive at the
moment. The computations of the Gromov—Witten invariants for an elliptic curve are much
akin to those occurring for Calabi—Yau three-folds. For instance, a giyaoint function
receives contributions from the stable maps of all degrees, in contrast to the Fano cases in
which only a finite number of degrees yields the correct dimension of the moduli space.
Consequently, the recursion relations and the Virasoro constraints seem to lose their efficacy
when one considers the Gromov-Witten invariants of an elliptic curve. It is similar to the
ineffectiveness of the WDVV equations for determining the number of rational curves on a
Calabi—Yau three-fold.
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Appendix A. Rudiments of the symmetric group S,

It is well known that the conjugacy classes, and thus the irreducible representations, of
the symmetric grous, are in one-to-one correspondence with distinct ordered partitions
of n. Let us consider an irreducible representatior§,pfabeled by the ordered partition
y = (n1,...,ny) = n,whereny > np» > --- > n,,. Let p; = n; + m — i and define the
Van der Monde determinant

Pt oy o 1

A N !
D(pla-”apm)z . . . .

Pt o2 pw 1

Then, the irreducible characters evaluated at the conjugacy clég9eand (2) can be
written, respectively, as

n
1A = e PP P
pilp2!- - pm!

and

_ D(p1, ..., Pi=1, Pi — 2, Pi+1s - -» Pm)
IRGEICEVIDY pal (i — 2 praal - ol

i€eZ
where the index sef is defined aqi € {1,...,m}|(p; — 2) > 0}. Furthermore, these
irreducible characters satisfy the simple relation

n\ Q2 1< -
== 1 - k - ng, A.l
<2> L@ " 2 k§=1 n(ng + 1) k§=1 nk (A.1)

which we utilize in the paper.

Appendix B. Useful facts

LemmaB.l. LetL = (e1, e2) := Ze1 + Zez be a two-dimensional lattice generatedday
andey. Then the number of inequivalent sublatticESC L of index[L : L'] = n is given

byoi(n) := Zd|n d.
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Proof. Let f1 = de; € L’ be the smallest multiple @f. Then, there existf, = ae;+be, €
L', a < d, such thatL’ is generated by and f> overZ. It is clear that the index of this
lattice isdb. Thus, for eachi dividing the index:, we have the following! inequivalent
sublattices{dey, (n/d)e2), (dei, e1+ (n/d)es), ..., (del, (d —1)e1+ (n/d)ez2). The lemma
now follows. O

LemmaB.2. Letn(m) be the number of distinct ordered partitions of a positive integer m
into positive integers. Thethe functiono1(n) has the following expression

(— 1)k+l k
o1(n) =n Z Z (l_[ rr(m,-)) .

mi+--+mp=n \i=1

Proof. As is well known, the functionst(m) arise as coefficients of the expansion of
1/24, N1

q“"n(g)~ ", L.e.

q1/24

—1 B.1
o = LT Z (m)q". (B.1)

We take log of both sides ¢B.1) andg-expand the resulting expression on the right hand
side. Now, using the fact that

log(g"**n(@)™H =) alTWq",
n=1

we match the coefficients gf to get the desired result. O

Asin[17],letN(n, m, v) be the number of edge-ordered graphs witkerticesn edges,
andv cycle partition, andV.(n, m, v) the number of connected such graphs. Then,

LemmaB.3. N(2k, 2¢, (k,k)) =0fore <k — 2.

Proof. These constraints follow from Theorem 4 [df7] which states that the length

of the cycle partition must satisfy the conditions< /| < min(n,m — n + 2¢) andl =

m — n(mod 2, wherec is the number of connected components. In our case? and

the second condition is always satisfied. The first condition, however, is violated for all

£ < k — 2 because < 2 and thus mit2¢ — 2k + 2¢) < 0. O
Similarly, one has the following lemma.

LemmaB.4. N.(2k,2k — 2, (k,k)) =0

Proof. This fact again follows from Theorem 4 {f7]. Here,c = 1 and mirin, m — n +
2¢) = 0, wherea$ = 2, thus violating the first condition of the theorem. O
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Appendix C. Computation of smple Hurwitz numbers

For computations oﬂﬁ:’; = Nu.n.r, we will need the following relation among the
numbers of irreducible and reducible covgrg]:

n (_1)k+l n
Tn,h,a = Z Z Bnl,h.ul T Bnk,h,zrkv (Cl)
P k ni, ..., Nk
ni+---+ng=n
o1+ ---+or=0
where
' 1 @)
_ n Xy
By = (nh)?1 ( ) Z ) < )
2) | S (UM f7

Furthermore, in these computations, we assume fbgtositive unless indicated otherwise.

C.1. Degrees 1 and 2

It is clear that the degree-1 simple Hurwitz numbers are given by

1
HET) = g

The number of simple double covers of a geauRiemann surface by genygsRie-

mann surfaces can be obtained by using the work of Mednykh on Hurwitz numbers for
the case where all branchings have the order equal to the degree of the covering
[15].

Claim C.1. The simple Hurwitz numbe@ié(l, 1) are equal ta2? for g > 2(h — 1) +
1.

Proof. Forg > 2(h — 1) 4+ 1, the number of simple branch points is positive, and we can
use the results of MednyKh4]. Let p be a prime number anfl, the set of all irreducible
representations of the symmetric grafip Then, Mednykh shows that the numbey ;, ,

of inequivalent degree-covers of a genus-Riemann surface by gengsRiemann with-
branch points (The Riemann—Hurwitz formula determineder = [2(1—A) p+2(g—1)].)

of ordery is given by

1
Nor = 1 Tphr + PP (p -1+ (p— (=D,

where

r I 2h—2+r
e 3 (20 (2

yeD) P
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wherey, (p) is the character of a-cycle in the irreducible representatigrof S, and /7 is
the dimension of . Forp = 2, So isisomorphic t,, and the characters of the transposition
for two one-dimensional irreducible representations are 1-ahdespectively. It follows
that

Nons = Topy = 22" for reven
o o 0 for rodd
and therefore that
551 = Naj, = 22,
which is the desired result. O

Remark. The answer for the cage= 1 andh = 1 is 3, which follows fromLemma B.1
Forh = 1andg > 1, we have&'i’:%(l, 1) = 4.

C.2. Degree 3
The following lemma will be useful in the ensuing computations:

LemmaC.1. Lets) = 25,13 )18, + 62 > izji18p.i- Then,

22" for jeven
By p.ary = .
k 0 for jodd

Proof. The result follows trivially from the general formula f&, , , by noting that the
character values of the transposition for the two irreducible representaticasid 1 and
1. O

We now show the following claim.

Claim C.2. The degree simple Hurwitz numbers are given by
N3 = 22h71(32h72+r _ 1) — 22h71(32g74h+2 _ 1)’

wherer = 6(1 — h) + 2(g — 1) is the number of simple branch points

Proof. T3, receives non-zero contributions from the following partitions of 3: (3) and
(1, 2). There are three irreducible representationSzadf dimensions 1, 1, and 2, whose
respective values of their characters on a transposition arel,land 0. Taking care to
account for the correct combinatorial factors easily yields the desired result. O

C.3. Degree 4

The degree 4 answer is slightly more complicated.
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Claim C.3. The degreet simple Hurwitz numbers are given by

N4 = 22h—1[(32h—2+r + 1)24h—4+r _ 32]1—2+r _ 22h—3+r + 1] + 24h—4+r(22h _ 1)
— 22h—1[(32g—6h+4 + 1)22g—4h+2 _ 32g—6h+4 _ 22g—6h+3 + l]

+ 2%~ 4+2(0%h _ 1), (C.2)
Proof. The last term i{C.2)comes from the second term(i2.6) by applyingLemma 2.1

To computely ;, -, We note that the only consistent partitions of 4 aratte when 4 has the
following patrtitions: (4), (1, 3), (2, 2), and (1, 1, 2). The only non-immediate sum involves

Z Bz,h,alBZ,h,o'z’

o1+02=0

which, upon applyind.emma C.1 becomes #+7—1, O

Higher degree computations are similarly executed, although one must keep track of
some combinatorial factors arising from inequivalent distributions of (C.1), and we
thus omit their proofs in the subsequent discussions.

C.4. Degree 5
For the degree 5 computation, we need the following lemma.
LemmacC.2. Lett,f = 301 Z{zl 3i,p + (Bk,1 + 8k,2) Zf:jﬂ. Then,

2%h  3h=1tr=j for j < reven
B3y =10 for jodd
2x 312141 for j=r,

from which follows the following claim.

Claim C.4. The degre® simple Hurwitz numbers are given by

N5,h,r — 22h—l(22h+r—2 _ 24h+r—4 _ 1) _ 32h—2 X 22h—1(1 + 22/’l+r—2 + 22/’!-‘1—2}’—2)

_,’_32h+r72 % 22},,1(1 _ 24h+r74) + 26h+r75 x 32h72

+ (1_|_ 24h+r—4)22h—1 X 32h—2 X 52h+r—2.

C.5. Degree 6

Similarly, by using the following lemma
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LemmaC.3. Letry =481 /18 p+ (8k148k2) Xi;y1- Then

3 x 2 it6h=2(h=24r=j 4 1) for j < reven
B4,h,<t,’j> =10 for jodd
3 x 24h—1(22h—132h—2 + 22h—1 + 32h—2) for ] =r

we obtain the following claim.

Claim C.5. The degreé simple Hurwitz numbers are given by

1
Nes.r = 25 | 360 2% _ 135 2%+ _ 40 x 22 x 3t

5% 22 34h+r(8+ 22h+r)
9
15x 2634 3") 5 x 26htr (g4 32ty
+
2 2
22h % 32h(25 x 24h+r +16x 52h+r + 2dh+r o 52h+r)
10
261 (100 x 3%+7 4 25 % 22  3Wtr | 95 5 92 o A+
481 x 2211 % 52h+r + 22h % 34h+r % 52h+r)
360
5x 219 x 2% 44 x 37 4 9x 22 x ¥
422 5 32 5y 22 32 5 7T
8

+ 20 x 22 x 3% (4  22(h+1) 4 p2htry

+ 26h—5 % 3r—1[32h—1(22h—l +1)— 3(22h—l) + 1]'

C.6. Degree 7

Claim C.6. The degred simple Hurwitz numbers are given by

_22h 3 x 2611 28h 24h+r 26h+r 22h x 32h 26h % 32h

Nopr=—m— -2 4= — —
Thr =" 32 64 a 32 6 | 96
28h % 32h 24h+r % 32h 24h+2r % 32h 26h % 5 x 32h
~ 576 36 24 T 288
28h x5 x 32h 26h x 3 28h x 3 22h % 32h+r
B 1152 “ 32 e T 18

26h % 32h+r 28h % 32h+r 26h+r % 32h+r N 22h x 34h+r
144 1152 288 81
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6/ Ah+-r 8h Ah+-r Ah+-r Ah+-r 6h+r Ah+-r
2°" x 3 2°" x 3 2 x 3 2 x 3

1206 10368 ' 648 2592
28h x 34h+2r 26h % 52h 28h x 32h % 52h 24h+2r % 32h % 52h
5184 800 ' 28800 1800
28h % 32(h+r) % 52h 24h+r % 32l1+r % 52h 26/’t+r X 34h+r X 52h
28800 1800 + 64800
26h % 34h+2r % 52h 28h % 32h x 5" 28h % 52h+r
64 800 + 576 - 3200
22h x 32h X 52h+r 26h+r X 32h % 52h+r 28h X 34h+r X 52h+r
450 + 7200 B 259200
28h % 32h N4 28h x 32h % 72h+r 26h+r % 32h % 52h X 72h+r
576 + 56448 + 352 800
28h % 34h+r % 52h x 72h+r 28h % 32h % 52h % 171
12700800 B 28800

Appendix D. Reducible covers

Y 1 X2\
Bn,h,r—(n!) <2> ZW(T) >

YERn

Boj,=2x2"71

[ 1
1+m]

Ben,r=2x 6121 1

3 3 2 1
+ 52h—2+r + Q2h—2+r + 102h—2+r + 52h—2+r |’

4" 6" 5 4"
+ 142h—2+r + 152h—2+r + 142h—2+r

62h—2+r

(2
(4
2
(2

5 1
T3z T o2 |
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8\’ ’ 10 % 10
B&h’r:2x8!2h_1<2) [1+ >

72h—2+r + 202h—2+r + 212h—2+r + 282h—2+r

16 gr 4" 100 4

+ 642h—2+r + 32h—2+r + 142h—2+4r + S + s |
a1 (9) 6 15 14 20

Bo ;=2 x 9! it [1+ i t e t gy + agee

35 14 14 36 20"

T lowar T s T g T fe@ar | 1@ on
21 14 14 6

T igpz g T le@or | 212 |

Appendix E. Simple Hurwitz numbersfor an dliptic curve target

We can compare our answers in the case of an elliptic curve target with those obtained
from string theory. To do so, we organiZg 1 2,_»>/n! into a generating functiom{f(q),
which is defined as

> o~ Ty1.2-2
(2g—2)H} =) uind" =) —F=dq".
n=1 n=1 !

Our explicit formulas forT;, 1,2,—2/n!, n < 7, from Section Cand the recursive method
discussed irBection 2.4give rise to the followingz-expansions off; (¢):
21H? = 2¢° + 164° + 60¢* + 160;° + 360;° + 672" + 12408
+19207° + 0(g™),

A1 H? =247 + 1607° 4 2448;* + 18 304;° + 90552;° + 341568’ 4 1068 928°
+2877696° + O(¢'%),

6!H} = 24° 4 1456;° 4+ 91 92¢;* + 1931 20@° + 21639 729° + 160 786 273’
+ 893985 280 + 4001 984 649° + 0(4%9),

8!H? = 2¢° + 13120 + 3346 368" + 197 304 064° + 5001 497 113°
+ 73102904 448" + 724280109 568 + 5371101006 335 + O(¢'%),

10!H? = 24 4+ 118 096;% + 120 815 289* + 19 896 619 84G°
+1139754451 084 + 32740 753325477 + 577 763760 958 728
+ 7092667 383039360 + 0(¢1°),
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121H] = 2¢® + 1062 88@> + 4 352 505 888" + 1996 102 225 024
+ 258031607 185272 + 14560223 135464 128
+ 457 472951327051 098 + 9293626 316 677 061 38+ 0 (419),

141H8 = 24 4+ 9565 93G° + 156 718 778 646" + 199 854 951 398 080
458230316 414 059 246 + 6 451 030 954 702 152 642
+ 360793945093 731 688 96D+ 12 127 449 147 074 861 834 880
+0(q"),

16!H3 = 24> 4 86093 44@> 4 5642 133787 00F + 19 994 654 452 125182
+ 13120458818 999 011 032+ 2 852 277 353 239 208 548 608
+ 283889181859 169 785013 248
+ 15786 934 495 235 533 394 850 826+ 0(¢19),

18!H1° = 2¢? + 774840 97§ + 203 119 138 758 0
41999804 372817081920+ 2954 080 786 719 122 704 2480
+ 1259649848110 685 616 355 872
+ 223062 465532 295 875 789 024 @80
420519169517 386 068 841 434 851 286- O(¢*9),

The free energieg, of string theory on the target space of an elliptic curve are known to
be quasi-modular forms of weighg6- 6. They have been computed up to genus @ 6j
and have the same expansiong i exp(?), wheret is the Kahler parameter of the elliptic
curve, as what we have above & .
For convenience, we also summarize the simple Hurwitz numbers for an elliptic curve
target and arbitrary source Riemann surfaces up to degree 7:
£ = 2) =2, 1} =23 -1
“11( ) = g1, Mlz(l) Mlg( ) [ 1.
M14<14) =2[6 +21 -3 +1], M15(15) =2[10 —6 +5 —4 +3 —2],
u16(16)_2x15’ 2x1042x9 —2x7 4+6" —2x5 +4x4
—4x 314244
M17(17) =227 -1 +14 -1 +10 —2x9 +3x7 -6 +2x 5
—Ax 4 +2x3 -2 —4], (E.1)

wherer = 2g — 2.
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Appendix F. The Hurwitz numbers ;Lg’ék(k, k)

1.2 (2k + 2)! k41
2k k) = ~—— 2 (Bk — 2)k2HTL,
/1«0,2 ( ) 48(k!)2 ( )
2.2 (2k +4)! (28— T3 + 4%\ .3
5 (k, k) = kRS
o2 K = =002 2880
326 4 (2k + 6)! [ —744+ 2530 — 2949%2 + 118%3 (2Kt
o2 1B = Tonme 725760 :
42 b (2k +8)! [18288— 72826 + 11130%2 — 77 73&3 + 21 015*
o2 T 8= 502 174182400
x k2k+7.
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